Announce ments

1) HW #3 up Thursday, due next week

Example 1. (heat equation)

Solve

 $\frac{\partial U}{\partial t} (x,t) = \frac{1}{2} \frac{\partial^2 U}{\partial x^2} (x,t),$

where $\frac{\partial U}{\partial x}(0,t) = 0$ $\frac{\partial U}{\partial X}$ (T, t) = DU(X, 0) = |

L)e can solve $2g'(t) = \alpha$ by integration'. g(t) $2\ln g(t) = \alpha t + P_1$ g(t) = C

 $Tf f(x) = e^{rx}$, we get $f''(x) - \gamma f(x) = D^{1}$ $re^{-} \chi e^{r} = 0,$ $So r^2 = 2$.

Suppose 220

1 her $r = \pm i \sqrt{-3}$ Solution to $y''(x) - \lambda y(x) = 0$ look like

Initial condition $\frac{\partial U}{\partial x}(o,t) = O.$ $\overline{I}f \ u(x,t) = f(x)g(t),$ $\frac{\partial U}{\partial x} = f'(x)g(t)$ $O = \frac{\partial U}{\partial x} (0, t) = f'(0)g(t)$ Since u(x, 0) = 1, $g(t) \neq 0$.

This says f'(0)=0, so if isx -isx $f(x) = C_1 C + C_2 C$ and isx -isx $f'(x) = iSc_1e^{-iSc_2e}$, $0 = f'(0) = iS(C(-C_{2}))$ so $C_1 - C_2 = 0$ and $C_1 = C_2 .$

If $C_1 = C_2$, then $f(x) = C_1 \left(\begin{array}{c} i \\ e \\ + \end{array} \right)$ $= C \left(2 \cdot (OS(SX)) \right)$ Since we showed last time $(os(\theta)) = \frac{i\theta}{2}$ that

Now use the remaining initial condition, $\mathcal{Q}(\pi,t) = O$ Remember $\frac{\partial v}{\partial x} = f'(x)g(t)$, so substituting, $if f(x) = C_1(2\cos(sx)),$ f'(x) = (-2c'z) siu(zx)

Then $\frac{\partial v}{\partial x} = (-\lambda(z)(\sin(zx))g(b)),$

 $D = \frac{\partial U}{\partial x} (\pi, t)$ $= (-\lambda C_1 S) sin(\pi S) g(t).$ Since u(x, 0) = 1, $C_1 \neq 0 \neq g(t)$, so $sin(\pi s) = 0$.

This says S has to
be of the form
$$S = n$$
 for n an
integer $(n=0, \pm 1, \pm 2, --)$.
We then have
 $U(x,t) = 2C_1 \cos(nx) e^{-2}$
where $d = -5^2$ and
n is an integer.

For more explicit Solutions, take Fourier Series (Math 454). Nonhomogeneous Equations

We know how to solve

$$y'' + 3y' + \partial y = 0$$
, what
about
 $y'' + 3y' + \partial y = \pm 2$

Guess and Check What if y(t) = mt+b? Then y'(t) = m, y''(t) = 0. The equation becomes O + 3m + d(mt+b) = t. (2m-1)t+(3m+25)=0Then

Then

$$3m-1=0$$
, so $m=\frac{1}{3}$
and
 $3m+3b=0$, so
 $2b=-\frac{3}{3}$,
 $b=-\frac{3}{4}$, Then
 $y=\frac{1}{3}-\frac{3}{4}$ is

a solution to our equation.

Now if y, Z are solutions y'' + 3y' + 2y = t,to

then

$$y'' + 3y' + 3y = t$$

 $z'' + 3z' + 3z = t$,

and subtracting, $y'' - z'' + 3(y' - z') + \lambda(y - z) = 0$.

Using linearity of the derivative, (y-z)''+3(y-z)+3(y-z)=0,So 4-Z is a solution to the homogeneous equation $t_{11} + 3t_{1} + 5t_{2} = 0$

All solutions to the
homogeneous equation
are of the form
$$f(t) = c_1 e^{-t} + c_2 e^{-t}$$
,

General Method: Variation of Parameters (Section 4.6) Another outrageous trick Any solution to G g'' + b g' + C g = 0is a linear combination of two linearly independent functions: $C_1f(t)+C_2g(t)$.

What if, for nonhomogeneous equations, we replace the Constants C1 and C2 with nonconstant functions of £7